Welçŏme

Greg Patterson C.C.A. President A&L Canada Laboratories

Discussion

- Soil test levels Dropping P,K
- Organic matter levels dropping
- Cost of Fertilizer Increasing due to Global Demand
- Environmental Pressures
- Experts in Our Industry in the Dark Ages
- Your Customers Looking for New Technology and Information

Figure 2 World Nutrient Use, 2004-2011

Median Bray P1 equivalent soil test levels in 2010 (for states and provinces with at least 2,000 P tests).

Bray P1 41

IPNI

Bray P1 6ppm

Figure 2. Change in median Bray P1 equivalent soil test levels from 2005 to 2010.

Nitrogen Balanced Fertility N:K RATIO

- Ratio N:K in Early season 1:3 progressing to a ratio through the season of 1:1
- Developed countries in the 60's and 70's fairly balanced at 1:0.8 to a current use N:K use of 1:0.36
- Developing countries little change 1:0.10 1:0.13 except South America has increased to 1:0.96 because of the response soybeans have to K

Nitrogen Balanced Fertility N:K RATIO

Figure 4: Development of the regional NK ratio in

Median soil test K levels in 2010 (for states and provinces with at least 2,000 K tests).

Ave K ppm 121 ppm

TECHNICAL BULLETIN

Specializing in Soil and Plant Analysis

1

SOIL OPTIMUM LEVELS

CEC

PPM	SOIL	0 - 6	7 -15	16 - 25	25+
Р	POOR	0 - 25	0 - 23	0 -18	0 - 13
	MED	26 - 55	24 - 43	19 - 33	14 - 23
	GOOD	56 - 93	44 - 83	34 - 55	24 - 43
	HIGH	94+	84+	56+	44+
K	POOR	0 - 45	0 - 60	0 - 80	0 - 100
	MED	46 - 90	61 - 120	81 - 160	101 - 200
	GOOD	91 - 180	121 - 240	161 - 320	201 - 400
	HIGH	181+	241+	321+	401+
Ca	POOR	0 -200	0 - 400	0 - 600	0 - 1000
	MED	201 - 400	401 - 800	601 - 1200	1001 - 2000
	GOOD	401 - 800	801 - 1600	1201 - 2400	2001 - 6000
	HIGH	801+	1600+	2400+	6000+
Mg	POOR	0 - 25	26 - 50	0 -75	0 - 100
	MED	26 - 50	51 - 100	76 - 150	101 - 200
	GOOD	51 - 100	101 - 200	151 - 300	201 - 600
	HIGH	101+	201 +	301+	601+

Change in K

-13ppm

- Ave CEC 18
- 234 lbs/ac
- 46.8/year

Figure 6. Change in median soil test K levels from 2005 to 2010.

TECHNICAL BULLETIN

Specializing in Soil and Plant Analysis

1

SOIL OPTIMUM LEVELS

CEC

PPM	SOIL	0 - 6	7 -15	16 - 25	25+
Р	POOR	0 - 25	0 - 23	0 -18	0 - 13
	MED	26 - 55	24 - 43	19 - 33	14 - 23
	GOOD	56 - 93	44 - 83	34 - 55	24 - 43
	HIGH	94+	84+	56+	44+
K	POOR	0 - 45	0 - 60	0 - 80	0 - 100
	MED	46 - 90	61 - 120	81 - 160	101 - 200
	GOOD	91 - 180	121 - 240	161 - 320	201 - 400
	HIGH	181+	241+	321+	401+
Ca	POOR	0 -200	0 - 400	0 - 600	0 - 1000
	MED	201 - 400	401 - 800	601 - 1200	1001 - 2000
	GOOD	401 - 800	801 - 1600	1201 - 2400	2001 - 6000
	HIGH	801+	1600+	2400+	6000+
Mg	POOR	0 - 25	26 - 50	0 -75	0 - 100
	MED	26 - 50	51 - 100	76 - 150	101 - 200
	GOOD	51 - 100	101 - 200	151 - 300	201 - 600
	HIGH	101+	201 +	301+	601+

% Saturation Ranges by C..E.C.

%SATURATON CATIONS	0 - 6	7 - 15	16 - 25	25+	
% <mark>K SAT</mark>	4 - 6	3 - 5	2 - 4	2 - 3	
% Mg SAT	10 - 20	8 - 20	5 - 20	5 - 20	
% Ca SAT	60 - 80	60 - 80	60 - 80	60 - 80	

Broadbalk Experiment since 1843

Broadbalk Experiment

Analyze your soil (know your dirt!)

DON'T GUESS SOIL TEST WHY SOIL TEST

- Soil analysis provides a nutritional map of the farm
- Soil analysis removes guess work
- Crop planning
- Finds "Hidden Hungers"
- Enables forward planning of a crops nutrient needs.

Report Number: C99282-001 Account Number: 67003

A & L Canada Laboratories East, Inc. 2136 Jetstream Road, London, Ontario, N5V 3P5

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

Determine			Percen	t Base Sat	urations	
Potassium K ppm	Magr	% K	% Mg	% Ca	% H	% Na
136 M 188 H 94 M	3 2 3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0

 Sample Number
 Crop
 Yield Goal
 Lime Tons/Acre
 N
 P2O5
 K2O
 Mg
 Ca
 S
 Zn
 Mn
 Fe
 Cu
 B

 Number
 Image: Sample Sample

- Grop years a investiged by a manufactor according to accord to service and you according contracting cost performance is made by A.S.L.

- Nutrients Required by

 Crops

 Building Blocks
- Macro Nutrients- Primary N, P, K
 Secondary S, Ca
- Micronutrients Zn

Co.

B, Cu, Fe, Mn,

Mo, CI, Si, Na,

Nutrient Absorption by Plants

K * Potassium Calcium Ca Mg Magnesium Cu Copper Fe Iron Mn Manganese Zinc Zn

Why Soil Test?

Nutrient Absorption by Plants

Nutrient Absorption by Plants

Element

- C
- H
- 0
- N
- P

Why Soil Test?

- S
- K
- Ca
- Mg

Discovery of Essentiality

- DeSaussure.....1804
- DeSaussure.....1804
- DeSaussure.....1804
- DeSaussure.....1804
- Von Sachs, Knop.....1865
- Von Sachs, Knop......1860
- Von Sachs, Knop......1860
- Von Sachs, Knop......1860

Element

Discovery of Essentiality

- Fe
- Mn
- Cu
 - Zn
- Mo

Why Soil Test?

- B
- CI
- Ni
- Na,Si,C
 o

- Von Sachs, Knop.....1860
- McHargue......1922
- Sommer.....1931
- Sommer and Lipman...1926
- Aron and Stout.....1939
- Sommer and Lipman...1926
- Brown

- Soil pH is variable throughout the season
- Buffer pH is more stable
- Soil pH is a measurement of the H+ in soil solution
- Buffer pH is a measure of the H+ on the soil particle

p	H
рН	Buffer
6.6	6.9
6.0 4.9	6.8

Samela	Lab	Omanic	Phosphorus	P nom	Potassium	Mannesium	Calcium	Sodium	No.	pH	CEC		Percen	t Base Sa	turations	
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	136 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 V 60 L 14 V 10 V	6.6 7.2 6.0 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zind Zn pp	m Manga	inese opm F	iron e ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alum	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 H 18 VH 9 M 15 H	4.07 2.81 4.67 5.37	и 11 и 31 и 32	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

Soil pH

Soil pH measures hydrogen ion activity and is expressed in logarithmic terms

It indicates acidity of the soil solution (active acidity).

Buffer pH

Buffer pH is a measurement of the amount of hydrogen ions which must be replaced and neutralized by liming.

It indicates the total acidity (active + reserve) of the soil.

pH Scale for Soil Reaction

pH Effect on Nutrient Availability

Soil and Buffer pH

Fertilizer Efficiency

Soil pH	% E	Fertiliz fficienc	% Fertilizer	
	Ν	Р	K	vvasted
5.0	53	34	52	54
5.5	77	48	77	33
6.0	89	52	100	20
7.0	100	100	100	0

Soil pH and Herbicide Residue

- Low pH (< 5.9) soils may have persistent herbicides – group two that will begin to break down once the pH increases
- A field that has had application of these herbicides may have levels high enough to cause damage once they are limed and the pH begins to increase
- Leave suspected fields at least one year before planting sensitive crops.

Phosphorus	s - P ppm
Bicarb	Bray-P1
14 L	24 M
28 H	53 VH
71	9 VL
48 VH	102 VH

- A&L performs a number of different P extractions depending on the region
 - Bicarb for high calcium soils
 (>2000 ppm calcium)
 - Bray P1 for more acidic soils

Sample	Lab	Omanic	Phosphorus	P. nom	Potassium	Maonesium	Calcium	Sodium		H I	CEC		Percen	t Base Sa	turations	
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	135 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 VI 60 L 14 VI 10 VI	6.6 7.2 6.0 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga Mn a	anese ppm l	iron Fe ppm	Copper Cu ppm	Boron B ppm	Solutile Salts ms/cm	Saturation	Alum	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 H 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	1	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

- Potassium in sample 1 rated medium at 136 ppm
- Potassium in sample 4 rated high at 136 ppm
- Ratings are based on the optimum level for that nutrient in that soil type
- Sample 1 is a loam....sample 4 is a course sand

Potassium

C TRANKS			
Potassium K ppm	Magnesium Mg ppm	Calcium Ca ppm	Sodium Na ppm
136 M	370 H	2550 M	29 VL
188 H	210 H	1000 M	60 L
94 M	335 H	1400 M	14 VL
136 H	25 VL	250 VL	10 VL

A COLUMN		A COLUMN TWO IS NOT		-	-		_		_		-		_			_
Sample	Lab	Omanic	Phosphoru	s - P nom	Potassium	Mannesium	Calcium	Sodium		pH	CEC		Percen	t Base Sa	turations	
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	136 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 VI 60 L 14 VI 10 VI	L 6.6 7.2 L 6.0 L 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga Mn	anese ppm l	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alun	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 H 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	32	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

Potassium K ppm	CEC meq/100g
136 M	17.5
188 H	7.9
94 M	12.5
136 H	4.3

- 136 ppm M
- 136 ppm H
- 1st soil is a loam
- 4th soil is a coarse sand
- Soil type is determined by the C.E.C.

Sample	Lab	Omanic	Phosphoru	s · P nom	Potassium	Magnesium	Calcium	Sodium	p	н	CEC	Percent Base Saturations						
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na		
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	135 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 V 60 L 14 V 10 V	L 6.6 7.2 L 6.0 L 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0		
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga	anese ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alum Al I	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR				
1 2 3 4	13 H 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	1	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00 00 00 00 00 00 00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33				

Potassiur

Potassium K ppm	Magnesium Mg ppm	Calcium Ca ppm	Sodium Na ppm
136 M	370 H	2550 M	29
188 H	210 H	1000 M	60
94 M	335 H	1400 M	14
136 H	25 VL	250 VL	10

- Cations are rated based on optimum level for their soil type
- Cations compete of exchange sites on soil particles

 Fertility programs should include build

Sample	Lab	Omanic	Phosphorus	s - P nom	Potassium	Maonesium	Calcium	Sodium		pH .	CEC		Percent Base Saturations							
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na				
1 2 3 4	1234	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	136 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 V 60 L 14 V 10 V	L 6.6 7.2 L 6.0 L 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0				
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga Mn a	anese ppm F	lron e ppm	Copper Cu ppm	Boron B ppm	Soluble Sats ms/cm	Saturation	Alum	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR						
1 2 3 4	13 <i>H</i> 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	1 32	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00 00 00 00 00 00 00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33						

- Cation Exchange Capacity is the measurement of the soils ability to hold and exchange nutrients.
- The higher the CEC the greater the clay content of the soil and the greater the nutrient holding capability

Sample	Lab	Omanic	Phosphoru	P nom	Potassium	Maonesium	Calcium	Sodium		pH	CEC		Percent Base Saturations							
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na				
1234	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	136 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 VI 60 L 14 VI 10 VI	6.6 7.2 6.0 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0				
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga Mn	anese ppm F	iron e ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alum	ninum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR						
1 2 3 4	13 H 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	1	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	000 000 000	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33						
- C.E.C. is a determination of soil type
- Soil ratings are based on C.E.C.
- Sands and Clays are different

CEC		Percen	t Base Sat	urations	-
meq/100g	% K	% Mg	% Ca	% H	% Na
17.5	2.0	17.6	72.8	6.9	0.7
7.9	6.1	22.2	63.6	4.8	3.3
12.5	1.9	22.3	56.0	19.2	0.5
4.3	8.2	4.9	29.4	56.5	1.0

			Discontractor		-		Calcium	Sodium			CEC		Percen	t Base Sa	turations	
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Magnesium Mg ppm	Ca ppm	Na ppm	pH	Buffer	meq/100	9 % K	% Mg	% Ca	%H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	136 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 V 60 L 14 V 10 V	L 6.6 7.2 L 6.0 L 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga Mn	anese ppm I	iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alum Al g	inum opm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 H 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	1	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00 00 00 00 00 00 00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

- A General rule
- Ideal %K 3 5% ullet
- Ideal % Mg 10 20% ullet
- Ideal % Ca 60 80% ullet
- Ideal % H 10 15% ightarrow

Phosphorus - P ppm

Manganese

Mn ppm

18 M

61

33 H

24 M

Bicarb

14 L

28 H

71

48 VH

Bray-P1

24 M

53 VH

9 VL

102 VH

Potassium

K ppm

136 M

188 H

136 H

iron.

Fe ppm

78 VH

24 H

48 H

75 VH

94 M

Organic

Matter

3.9

4.4

27

2.1

Zinc

Zn ppm

4.0 M

2.81

4.6 M

5.3 H

Lab

Number

Sulfur

S com

13 H

18 VH

9 M

15 H

2

3

		Pe	rcent	Base	Satur	ation	s		
	% K	% N	Лg	% (Ca	%	1	% Na	a
	2.0 6.1 1.9 8.2	17. 22. 22. 4.	6 2 3 9	72. 63. 56. 29.	8 6 0 4	6.9 4.8 19.2 56.5	325	0.7 3.3 0.5 1.0	
Calcium	Sodium Na com	- PH	Butter	CEC meg/100	a sk	Percen	t Base Sat	with H	16 No
2550 M 1000 M 1400 M 250 V	29 v 50 / 14 v 1 10 v	/L 6.6 7.2 /L 6.0 /L 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
ion ipm	Soluble Sats ma/cm	Saturation	Alum	tinum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
A 1 4 4 1	10.0		40	00	10.14	0.44	64		

400

1000

1200

1

8

35 H

15 M

9 L

0.27

0.09

1.67

56

39

33

Calci

Ca p

1.8 VH

2.0 VH

1.5H

Boron

B ppm

1.1 M

1.5 H

0.8 M

1.5 H

Magnesium

Mg ppm

370 H

210 H

335 H

Copper

Cu ppm

2.8H

0.9M

1.2H

1.4H

25 VL

CEC and Base Saturation

Sample

Number

2

4

2

3

Sample

Number

Sodium.

Sodium ppm levels are not as important as the %Na in the soil

%Na should be less than .5% or germination and root growth could be inhibited.

		1						10 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	-					1.0		
Sample	Lab	Organic	Phosphoru	s - P ppm	Potassium	Magnesium	Calcium	Sodium	-	H	CEC		Percen	t Base Sa	turations.	
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	6 H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 V 9 V 102 V	136 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 V 60 L 14 V 10 V	6.6 7.2 6.0 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zinc Zn ppr	Mang Mn	anese ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alum	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 H 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	1 32	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00 00 00 00 00 00 00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

TECHNICAL BULLETIN

Specializing in Soil and Plant Analysis

1

SOIL OPTIMUM LEVELS

CEC

PPM	SOIL	0 - 6	7 -15	16 - 25	25+
Р	POOR	0 - 25	0 - 23	0 -18	0 - 13
	MED	26 - 55	24 - 43	19 - 33	14 - 23
	GOOD	56 - 93	44 - 83	34 - 55	24 - 43
	HIGH	94+	84+	56+	44+
K	POOR	0 - 45	0 - 60	0 - 80	0 - 100
	MED	46 - 90	61 - 120	81 - 160	101 - 200
	GOOD	91 - 180	121 - 240	161 - 320	201 - 400
	HIGH	181+	241+	321+	401+
Ca	POOR	0 -200	0 - 400	0 - 600	0 - 1000
	MED	201 - 400	401 - 800	601 - 1200	1001 - 2000
	GOOD	401 - 800	801 - 1600	1201 - 2400	2001 - 6000
	HIGH	801+	1600+	2400+	6000+
Mg	POOR	0 - 25	26 - 50	0 -75	0 - 100
	MED	26 - 50	51 - 100	76 - 150	101 - 200
	GOOD	51 - 100	101 - 200	151 - 300	201 - 600
	HIGH	101+	201 +	301+	601+

% Saturation Ranges by C..E.C.

%SATURATON CATIONS	0 - 6	7 - 15	16 - 25	25+	
% <mark>K SAT</mark>	4 - 6	3 - 5	2 - 4	2 - 3	
% Mg SAT	10 - 20	8 - 20	5 - 20	5 - 20	
% Ca SAT	60 - 80	60 - 80	60 - 80	60 - 80	

% saturation of the cations is an understanding of the predictable availability of each cation in less than ideal weather conditions

	Percen	t Base Sat	urations	
% K	% Mg	% Ca	% H	% Na
2.0	17.6	72.8	6.9	0.7
6.1	22.2	63.6	4.8	3.3
1.9	22.3	56.0	19.2	0.5
8.2	4.9	29.4	56.5	1.0

Samela	1.45	Omanic	Phosphore	A-P nom	Potassium	Magnesium	Calcium	Sodium		pH	CEC		Percen	t Base Sa	turations	
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	135 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 V 60 L 14 V 10 V	6.6 7.2 6.0 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga Mn	inese ppm	iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alum	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 H 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	1	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

- Sulfur nutrition is important
- Balance S to C to N
- For optimum production S should be High, greater than 25 ppm

Sample	Lab	Omanic	Phosphoru	s - P nom	Potassium	Maonesium	Calcium	Sodium		pH	CEC		Percen	t Base Sa	turiations	
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na
1234	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	136 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 VL 50 L 14 VL 10 VL	6.6 7.2 6.0 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga Mn i	anese ppm F	iron e ppm	Copper Cu ppm	Boron B ppm	Soluble Sats ms/cm	Saturation	Alum	idnumi pprm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 H 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	1	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

Change in Sulfate Deposition

Sulfate levels from 1989 to 1991

Sulfate levels from 1999 to 2001

US EPA National Atmospheric Deposition Program

Boron

- Boron is an important element in the function of a plant
- Boron can be very toxic
- Uniform soil application is important
- Most crops require greater than 1 ppm for optimum growth and quality
- Supplement ground application with timely foliar application

C.E.C. < 18 1.5 ppm.

C.E.C. > 18 3.0 ppm.

Sample	Lab	Organic Phosphorus - P. ppm		Potassium	Maonesium	Calcium	Sodium		pH	CEC		Percen	t Base Sat	urations		
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	135 M 188 A 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 V 60 L 14 V 10 V	L 6.6 7.2 L 6.0 L 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga Mn i	anese ppm 8	iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alum	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 <i>H</i> 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	32	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00 00 00 00 00 00 00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

5.0

Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm
4.0 M	18 M	78 VH	2.8 <i>H</i>
2.8 L	6 L	24 <i>H</i>	0.9 <i>M</i>
4.6 M	33 H	48 <i>H</i>	1.2 <i>H</i>
5.3 H	24 M	75 VH	1.4 <i>H</i>

- Zn, Mn, Fe, Cu, are the 4 transition metals
- Each has specific functions in plant growth
- One can replace anothe
 - do not use shot gun approach to supplying these metals

Sample	Lab	Omane	Phosphore	15 - P 000	Potassium	Maonesium	Calcium	Sodium	N.	pH	CEC		Percen	t Base Sa	turations	
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100	9 %K	% Mg	% Ca	%H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 / 53 / 9 / 102 /	136 M 14 188 H 14 94 M 14 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 v 60 L 14 v 10 v	L 6.6 7.2 L 6.0 L 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zinc Zn pp	e Mang m Mn	panese ppm	iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alum	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 <i>H</i> 18 VH 9 M 15 H	4.07 2.87 4.67 5.37	M L M	18 M 6 L 33 H 24 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H	1 17 1 8	16 4 10 12	00 00 00 00 00 00 00 00 00 00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

	$\mathbf{\hat{b}}$	
Z	Ľ	
	2	
	\mathbf{D}	
	0	
	0	

5.0	33	25	3.0
Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm
4.0 M 2.8 L 4.6 M	18 M 6 L 33 H 24 M	78 VH 24 H 48 H 75 VH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>

Zn, Mn, Fe, Cu, are the 4 transition metals

 Each has specific functions in plant growth

One can replace anothe

 do not use shot gun approach to supplying these metals

A COLUMN										-								
Sample.	Lab	Organic	Phosphor	us - P pp	n	Potassium	Magnesium	Calcium	Sodium		p	H	CEC	5	Percen	t Base Sa	turations	12120
Number	Number	Matter	Bicarb	Bray-P	1	K ppm	Mg ppm	Ca ppm	Na ppm		pH	Buffer	medutoo	9 35 K	% Mg	56 Ca	% H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 Vh	24 53 9	M VH VL VH	136 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 V 60 L 14 V 10 V	1	6.6 7.2 6.0 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zin Zn pp	c Man sm Mn	panese ppm	Fi	liron e ppm	Copper Cu ppm	Boron B ppm	Soluble Sats ma/cm	Sat	R .	Alum Al I	inum spm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 <i>H</i> 18 VH 9 M 15 H	4.0 2.8 4.6 5.3	M L M H	18 M 6 L 33 H 24 M		78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 M 1.8 VH 2.0 VH 1.5 H		1 17 1 8	16 4 10 12	00 00 00 00 00 00 00 00 00 00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

- Soluble Salts should be less than 1.8 for mineral soils
- Fertilizer application increases soluble salts, K, Ca, NH₄⁺, Na
- Sodium is also a contributor to soluble salts
- Sodium can be high enough to create growth problems and soluble salts still OK

Sample	Lab	Omanic	Phosphorus	+P nom	Potassium	Maonesium	Calcium	Sodium		pН	CEC		Percen	t Base Sa	turations	
Number	Number	Matter	Bicarb	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	H	Buffer	meg/100	增 特K	% Mg	% Ca	%H	% Na
1 2 3 4	1 2 3 4	3.9 4.4 2.7 2.1	14 L 28 H 7 L 48 VH	24 M 53 VH 9 VL 102 VH	136 M 188 H 94 M 136 H	370 H 210 H 335 H 25 VL	2550 M 1000 M 1400 M 250 VL	29 v 60 L 14 v 10 v	6.6 7.2 6.0 4.9	6.9 6.8 6.8	17.5 7.9 12.5 4.3	2.0 6.1 1.9 8.2	17.6 22.2 22.3 4.9	72.8 63.6 56.0 29.4	6.9 4.8 19.2 56.5	0.7 3.3 0.5 1.0
Sample Number	Sulfur S ppm	Zinc Zn ppm	Manga Mn a	inese opm f	Iron e ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation	Alum	inum ppm	Nitrate Nitrogen NO3-N ppm	K/Mg Ratio	ENR		
1 2 3 4	13 <i>H</i> 18 VH 9 M 15 H	4.0 M 2.8 L 4.6 M 5.3 H	1	8 M 6 L 3 H 4 M	78 vH 24 H 48 H 75 vH	2.8 <i>H</i> 0.9 <i>M</i> 1.2 <i>H</i> 1.4 <i>H</i>	1.1 M 1.5 H 0.8 M 1.5 H	1.2 <i>M</i> 1.8 VH 2.0 VH 1.5 <i>H</i>	1 17 1 8	16 4 10 12	00 00 00 00	19 M 35 H 15 M 9 L	0.11 0.27 0.09 1.67	51 56 39 33		

Soluble Salts

Mmho/cm

Effects

- <0.40Non-saline
- 0.40-0.80
 Very slightly saline
- 0.81-1.20
 Moderately saline
- 1.21 1.60

Saline

• 1.61 - 3.20

Strongly saline

• >3.2

Very strongly saline

Report Number: C99221-005 Account Number: 67003

C:N 22.6

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

Understanding Plant Nutrient Requirements

* Crop yield is influenced by a number of factors in addition to soil fertility. No guarantee or waranty concerning crop performance is made by A & L * Results reported on a dry weight basis. * NQ -N as received.

A&L Handbook for interpretation of compost quality and intended use

COMPOST

NUTRITIONAL MANAGEMENT PROGRAM

A & L CANADA LABORATORIES

2136 Jetstream Rd., London, Ontario N5V 3P5 Tel.: (519) 457-2575 Fax: (519) 457-2664

micronument ranges

Very low	Low	Medium	Good	High	Very high
Manganese					
0-10	10-15	16-30	30-45	45-100	>100
Copper	******				
0-1.5	1.5-6	7-12	13-18	19-25	>25
Boron					
0-0.5	0.6-1.5	1.5-2.4	2.5-3	3-6	>6
Zinc					
0-2	2-3	3-5	5-8	8-10	>11
Sulfur					
0-5	5-10	10-20	20-30	30-40	>40

INTERPRETATION OF

ORGANIC SOIL AND COMPOST ANALYSIS

Our Compost Analysis was researched and developed by A&L Canada Laboratories and North Carolina State testing laboratories in cooperation with Rose Growers Inc. of the US. This analysis is specifically designed to analyze soil that contains more than just peat material. This would include composted materials, peat, and soil mixtures, greenhouse mixes, potting soil mixes, and organic material used as feedstock that may be used in the composting process.

This analysis unlike the Saturated Paste method will extract nutrients that are contained in the mineral portion of these soils and mixes which gives us a more precise interpretation of nutrient availability over the growing season. Extensive field calibration has been done to support this information.

Our Organic Analysis for lime pH is different than SMP. We use this number to calculate an acidity number using a specific buffer test developed to give a more precise value for the addition of lime material to correct pH and calcium deficiencies.

OPTIMUM pH FOR VARIOUS SOIL TYPES

SOIL CLASS	TARGET Ph
Mineral Soil	6.5
Mineral Organic Soil	5.5
Organic Soll	5.2
	(5.0-5.5)

pH requirement may vary depending on the crop that is to be grown

LIME REQUIREMENT = AC X FACTOR-RESIDUAL LIME CREDIT

- AC= 4(6.6 LIME INDEX)
- FACTOR = <u>desired pH</u> Soil pH
 - 6.6 pH of Soil

Residual credit (RC) for lime applied prior to soil test. RC is reduced by 16%/month, from the time of application to time of soil test for mineral or organic soil.

INTERPRETATION OF DATA (COMPOST ANALYSIS REPORT)

Each set of results has a chart for interpretation of ppm rating. It also has a calculation of CEC and % saturation which are broad ranges across all soils. The second line of values differentiate the specific type of unique properties of the compost. On the extreme right of the second line are listed the meq of the cations and ratios that are optimum.

9

PROPORTIONAL EQUIVALENTS (meq) COMPARISONS OF THE CATIONS

K— The optimum range for meq of K is between 0.5 - 1.5 meq/100g. Levels less than 0.5 will need K added to support plant growth. Levels greater than 1.5 may contribute to a soluble salt condition that can restrict root growth and cause plant injury.

Mg— 1.2-8 meq/100g is the ideal range. Mg to K should be 7:1 for optimum availability of each nutrient.

Ca- 8-13 meq/100g is ideal for compost. The relationship of Ca to Mg should be 5:1

Na— Levels less than 1% saturation are ideal. Root growth will be very restricted if plants are grown in material with sodium levels greater than 1%. Material with sodium greater than 1% and less than 3% should be blended or have the sodium leached out using water and gypsum.

Optimum Ranges of Cations

- K Potassium optimum range is 3 5%
- Mg Magnesium optimum range is 9 20%
- Ca Calcium optimum range is 60 80% but this may vary depending on the crop

MEQ Comparison of the Cations

- Potassium levels must be greater than .5meq to support plant growth but less than 1.8 meq or a salt condition may occur
- K:Mg ratio should be 1:7
- Mg:Ca ratio should be 1:5, critical for potting media

Report Number: C99221-005 Account Number: 67003

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

To: GREG PATTERSON 2136 JETSTREAM ROAD LONDON, ON N5V 3P5

For: RESEARCH FOR COMPOST COUNCIL OF CANADA

Potting Mix

Report Date: 19/09/01

1

27.7

C:N 22.6

Optimum Range:

100.0

3.02

3-5

11.47

8 - 20

85.35

60 - 80

0.16

0.84

0.5 - 1.3

 \mathbf{x}

COMPOST REPORT

Magnesium Total Available Lime Phosphorus Potassiun Calcium Sample Lab pH Number P ppm Mg ppm Ca ppn Index K ppm Number Organic Matter % Organic Matter % 326 386 4724 94 12041 6.5 6.7 36.5 21.90 Soluble Moisture Sodium Nitrate-N Sulfur Zinc Manganese Iron Copper Boron Salt % Zn ppm B ppm NQ -N ppm S ppm Mn ppm Fe ppm Cu ppm Na ppm ms/cm 41.8 5.0 10 302 4.1 1.4 10 148 3.0 182 INTERPRETATION C/N Ratio Percent Base Saturation Proportional Equivalents (meg) Cation Ratio CEC % BS % Na K Ca Mg Mg/K Ca/Mg meg/100g K Ca 70 IVIU Na

3.17

* Crop yield is influenced by a number of factors in addition to soil fertility. No guarantee or waranty concerning crop performance is made by A & L * Results reported on a dry weight basis. NO -N as received.

23.62

0.04

4:1

7:1

7:1

5:1

Page: 1

 A&L Handbook for interpretation of compost quality and intended use

Compost Management

Compost Analysis for Available Nutrients and Soil Suitability Criteria and Evaluation

Note: The following pages on "Nutrient Identification" analysis, are data conceived and developed by A&L Canada Laboratories and their affiliates: specifically for the Compost Industry.

The use of this analysis is now available for those wishing not to just maintain, but to advance in the quest for quantifying the value of their compost as a growth media.

Tests Required to Monitor the Compost Process

Basic Monitoring Analysis

Temperature, Moisture, C:N Ratio, pH

Basic Monitoring Analysis Plus

Total nitrogen, Total Phosphorus, Total Potassium, pH, Organic Matter, C:N, Sodium, Moisture, Ash, Organic Carbon, Bulk Density.

Soil Suitability Testing of Compost

This test is the same one used for finished compost. The information on this test will help in understanding feedstock materials and blending to achieve the desired finished product.

Sampling Procedure See appendix D

(table 1b)

Material High in Carbon	C/N Ratio		
autumn leaves	30-80:1		
straw	40-100:1		
wood chips or sawdust	100-500:1		
bark	100-130:1		
mixed paper	150-200:1		
newspaper or corrugated cardboard	560:1		
Materials High in Nitrogen			
vegetable scraps	15-20:1		
coffee grounds	20:1		
grass clippings	15-25:1		
manure	5-25:1		

CARBON:NITROGEN RATIO

Schematic representation of the relationship between the C:N ratio of an organic amendment, nematicidal activity and phytotoxicity. (From Rodriguez-Kabana et al, 1987)

× .	/	
		Soluble Salt (EC)
Very low	075	May be used as a planting media directly, will require some nutrient addition for plant growth.
Acceptable	.75-2.0	May be used directly as a media for small plants and seeding.
Medium	2.0-3.5	May be used for transplanting potted plants and mature plants with high nutrient demand. In applications with tender plants may need to be diluted with 25 to 50% soil.
Medium high	3.5 - 5	Can be used for topdressing established plants or blended in as a soil amendment to gardens or soils 2-1 to 5-1.
High	5 - 10	Used as a soil amendment and will require diluting with existing soil depending on the use 4-1 up to 10-1 for more sensitive plantings.
Very high	>10	Use only at low application rates in areas of plantings that do not have salt sensitivity.

Sodium

Sodium cont'd

Only a few plant species can tolerate high sodium levels and for the most part sodium levels greater than 1% saturation in media are toxic to root systems. Sodium competes with calcium and potassium uptake and damages root tissue when in excess. A reading of greater than 1% saturation of sodium on the exchange complex causes germination and emergence problems for a number of plants. This indication of sodium availability will suggest possible damage to plant growth long before a calculated SAR may suggest problems.

Report Number: C01106-012 Account Number: 67003

A & L CANADA LABORATORIES EAST, INC.

AL

2136 Jetstream Road · London, Ontario N5V 3P5 · Tel: 519/457-2575 Fax: 519/457-2664

For:

To: GREG PATTERSON 2136 JETSTREAM ROAD LONDON, ON N5V 3P5

Premium Potting Soil?

Report Date: 20/04/01

COMPOST REPORT

Page: 1

Sample Number	N	Lab umber	рН	Lime Index	Total Organic Mat	Av ter % Organ	ailable ic Matter %	Phosphor P ppm	us Pota K	assium ppm	Magnesium Mg ppm	Calcium Ca ppm
1	1	3042	6.0	6.2	16.8	10	80.0	184		459	331	2392
Sulfur S ppm	Zr	Zinc ppm	Mangar Mn pp	iese om	Iron Fe ppm	Copper Cu ppm	E	3oron I ppm	Sodium Na ppm	Nitrate-N NO ₃ -N ppr	Soluble Salt ms/cm	Moisture %
36		5.0	68	}	210	1.5		1.0	65	80	1.6	34.2
						INTE	RPRETA	TION				date that
CEC		Per	cent Base	e Saturat	ion	Pro	portional E	Equivalents	(meq)	C	Cation Ratio	C/N Ratio
meq/100g	% BS	% K	% Mg	%	Ca % Na	×	Mg	Са	Na	Mg/ł	K Ca/Mg	
17.7	91.0	6.63	15.34	67.	41 1.59	1.18	2.72	11.96	0.28	2:1	4:1	21.7
Optimum F	Rande:	3 - 5	8 - 20	60	- 80	1.5 - 1.3	3			7:1	5:1	

* Crop yield is influenced by a number of factors in addition to soil fertility. No guarantee or waranty concerning crop performance is made by A & L * Results reported on a dry weight basis. * NO₃-N as received.

A&L Canada is a laboratory accredited by Standards Council of Canada / CAEAL and OMAFRA.

Relationship between Conductivity (EC) and Degree of Salinity in Mineral soils

	Soil Texture						
Degree of salinity	Courser to Loamy Sand	Loamy Fine Sand to Loam	Silt Loam to Clay Loam	Silty clay Loam to Clay			
		dS	m-1				
Non-Saline	0-1.1	0-1.2	0-1.31	0-1.4			
Slightly Saline	1.2-2.4	1.3-2.4	1.4-2.5	1.5-2.8			
Moderately Saline	2.5-4.4	2.5-4.7	2.6-5.0	2.9-5.7			
Strongly saline	4.5-8.9	4.8-9.4	5.1-10.0	5.8-11.4			
Very Strongly Saline	>9.0	>9.5	>10.1	>11.5			

Relationship between Conductivity (EC) and Degree of Salinity in all soils using Saturated Paste

	Soil Texture
Degree of salinity	All soils by Saturated Paste
	dSm-1
Non-Saline	0.0-2.0
Slightly Saline	2.1-4.0
Moderately Saline	4.1-8.0
Strongly saline	8.1-16.0
Very Strongly Saline	>16.0

Determination of Soluble Salts (EC) in organic soils and soilless media

	Soil Texture
Degree of salinity	All soils by Saturated Paste
	dSm-1
Low	0-0.75
Acceptable	0.75-2.0
Optimum	2.0-3.5
Very High	3.5-5.0
High	>5.0

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, ON, N5V 3P5 Tel: (519) 457-2575 Fax: (519) 457-2664

Compost Analysis Proficiency

CERTIFICATE OF ANALYSIS

				++++++++
PARAMETER	RESULT	UNIT	DETECTION	METHOD REFERENCE
Faecal Coliform Salmonella	< 1000	cfu/g PIA/10.0g	5	Spread Plating Presence/Abasence
Compost Stability Index	8		0.01	TMECC.05.08
Respiration-CO2-C/g	0,10	ngCO2	0.01	TMECC.05.05-B
Respiration - CO2-C/g TS/day	0.10	mgCO2	0.01	TMECC.05.08-B
Total Inert Materials	BDL*	%	0.10	Gravimetric
Total Sharp Inert Materials (> 3.0mm)	BDL*	%	0.01	Gravimetric
Total Plastic Inert Materials	BDL*	.96	0.01	Gravimetric
C:N Ratio	27.50			Combustion/LOI
Moisture	49.40	%	0.10	Moisture @ 105C

BDL - Below detectable levels Maturity Index: 8- Inactive, highly mature compost, very well aged.

Results Authorized By:

Robert J. Deakin, C.Chem Laboratory Director

A & L Canada is a Laboratory Accredited by Standards Council of Canada / CAEAL and OMAFRA

Compost stability

A&L Canada Laboratories Inc. 2136 Jetstream Road · London, Ontario · N5V 3P5 · (519) 457-2575

Compost Summary Report

CQA Product Quality Test Requirements

Sample	Recommended Product Use	PH	C/N ratio	Moisture	Particle size	Soluble Salts	Maturity Index
789 (Mar. 15/06)	 Landscaping/Soil Amendment 	7.6	18:1	41.3 %	3/8 in.	3.8 ms/cm	8 (Slovita)

suited for general landscaping, and soil mix blending purposes due to its texture and rich innertal properties. The suggestion are suggested as a guide for interpretation on what the best end use may be.

Comments:

Heavy Metals: The results of our testing indicate the sample identified as 789, Mar. 15, 06 meets the current Ontario type A compost standards for maximum allowable trace metal content in compost.

Microbiological: The results of our testing indicate this sample meets the Ontario type A compost standards for maximum allowable microbiological levels.

Compost Quality Requirements: *The results of our testing indicate that this product is slightly coarser textured compost (3/8 in.), with some evidence of sodium. Based on the properties, suggested uses would meet criteria for soil amendment and soil mix blending and light topdressing end-uses purposes with precautionary restrictions. The precautionary exceptions being the proportion of sodium (%Na), which if used in too heavy a proportion could cause some problems with sensitive species. The recommended maximum allowable level of sodium for landscaping and soil amendment purposes is 2.0% Na in the final soil mix. This compost is 3/8 in. particle sized texture, and very rich in available potassium, calcium, and zinc, which make it ideal for soil enriching, and amendment. If used, as part of a soil mix amendment would recommend a minimum of 5 parts soil blended to this compost.

Table 05.08-1 Compost Stability Index—Ranges indicate relative compost stability for various test methods. The level of microbial activity in a sample is based primarily upon results of respiration monitoring; however, the index assumes optimized moisture, temperature, and nutrient status that favor microbial activity, and insignificant concentrations toxins and other compounds that inhibit microbial respiration.

SOUR OM 05.08-A	СО2-С 05.08-В	DEWAR 05.08-D	SOLVITA® 05.08-Е	BAC OC 05.08-F	STABILITY RATING	General Characteristics
< 12	< 2	v	7 – 8	< 2	very stable	 well cured compost no continued decomposition no odors no potential for VFA phytotoxicity and odor
12 - 36	2 – 8 Degre	ı∨ e of sta	5–6 bility	2 – 4	stable	 cured compost odor production not likely limited potential for VFA phytotoxicity and odor minimal impact on soil carbon and nitrogen dynamics
36 - 84	8 – 15	III	3 – 4	4 – 12	moderately unstable, raw compost	 uncured compost minimal odor production moderate to high potential for VFA phytotoxicity moderate potential for negative impact on soil carbon and nitrogen dynamics
84 – 144	15 - 40	II	2	12 – 40	raw compost, or raw organic products	 uncured compost odor production likely high potential for VFA phytotoxicity and odor high potential for negative impact on soil carbon and nitrogen dynamics
> 144	> 40	I	1	> 40	raw feedstocks, unstabilized material	 raw, extremely unstable material odor production expected probable VFA phytotoxicity with most materials negative impact on soil carbon and nitrogen dynamics expected generally not recommended for use as compost

REPORTING UNITS:

SOUR OM : mg O₂ g⁻¹ OM d⁻¹; CO₂-C : mg CO₂-C g⁻¹ OM d⁻¹; Dewar and Solvita[®] : refer to respective indices; BAC OM : mg CO₂-C g⁻¹ OC d⁻¹. It is not recommended to report a respirometry test result as the sole measure of compost stability.
Heavy metal vs micro-nutrient

Heavy metal

Micro-nutrient

More Research required

- Mercury
- Lead
- Cobalt
- Selenium

• Iron

- Manganese
- Molybdenum
- Nickel
- Zinc

A & L CANADA LABORATORIES EAST, INC.

2136 Jetstream Road • London, Ontario N5V 3P5 • Tel: 519/457-2575 Fax: 519/457-2664

10/2

Certificate of Analysis

Client: Greg Patterson	Report#: C99221-005
Account#: 67003	Sample Matrix: Compost
Project: Compost Research	Date of Report: Aug. 30, 1999

Method I.D. Environmental Parameters

PARAMETERS	SAMPLE ID / RESULTS (ppm)	MAC	MDL
	Sample # 4	ug/g	ug/g
Cadmium	< 2.00	3.00	2.00
Chromium	7.80	50.0	1.00
Cohalt	2.60	25.0	1.00
Copper	50.9	60.0	<u>1</u> .00
Lead	19.2	150.0	2.00
Molyhdenum	2.50	2.00	2.00
Nickel	6.40	60.0	1.00
Zinc	150.0	500.0	1.00

Results Authorized By:

Robert J. Deakin Laboratory Director

Report Number: C99296-001 Account Number: 67003

A & L CANADA LABORATORIES EAST, INC.

2136 Jetstream Road . London, Ontario N5V 3P5 . Tel: 519/457-2575 Fax: 519/457-2664

To: GREG PATTERSON 2136 JETSTREAM ROAD LONDON, ON N5V 3P5 For: RESEARCH

Report Date: 10/20/99

COMPOST REPORT

Page: 1

Sample Number	N	Lab Imber	рH	L I	lime ndex	Organic Matter %	Phos P	phorus ppm	Potas K p	sium pm	Magnesium Mg ppm	Calcium Ca ppm
TWM	1		7.7		2.2.24	39.7	5	24	19	81	618	10000
Sulfur S ppm	Zn	Zinc ppm	Manganes Mn ppm	e iro Fep	n pm	Copper Cu ppm	Boron B ppm	Soo	dium ppm	Nitrate-N NO ₃ -N ppm	Soluble Salt ms/cm	Moisture %
371	3	0.6	34	16	1	2.8	2.1	4	76	15	3.1	56.1
	2 ² 55	÷				INTERPRET	ATION					. 1.1.78
CEC		Per	cent Base S	aturation		Pro	portional Ec	quivalents	(meq)	an a	Catio	n Ratio
meq/100g	% BS	% K	% Mg	% Ca	% Na	к	Mg	Ca	Ν	a	Mg/K	Ca/Mg
88.6	70.2	5.73	5.73	56.41	2.34	5.08	5.08	50.00	2.(07	1:1	10:1
Optimum F	Range:	3-5	8 - 20	60 - 80		0.5 - 1.3	3				7:1	5:1

* NO3-N as received.

meronument nanges.

Very low	Low	Medium	Good	High	Very high
Manganese					
0-10	10-15	16-30	30-45	45-100	>100
Copper		(C			
0-1.5	1.5-6	7-12	13-18	19-25	>25
Boron					
0-0.5	0.6-1.5	1.5-2.4	2.5-3	3-6	>6
Zinc			32		
0-2	2-3	3-5	5-8	8-10	>11
Sulfur					
0-5	5-10	10-20	20-30	30-40	>40
			-		

Typical Mineral Concentrations

Parameter

Concentration %

- Total Nitrogen
- Total Phosphorus
- Total Potassium
- Total Calcium
- Total Magnesium

- 0.6
- 0.25
- 0.20
- 3.0
- 0.3

Report Number: 1308-023 Account Number: 98056

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

To:

Attn:

Report Date: 11/28/2011

COMPOST REPORT

Page: 1

Sample Number	N	Lab lumber	pН	Lime Index			Availat Organic Ma	ole P atter%	hosphorus P ppm	Potassium K ppm	Magn Mg	esium ppm	Calcium Ca ppm
1	7	768	5.4	5.9			58.	1	296	1115	1	82	1471
Sulfur S ppm	Z	Zinc n ppm	Manga Mn pj	nese om	Iron Fe ppm	Coj Cu	pper ppm	Boror B ppn	n Sodium n Nappm	Nitrate-N NO ₃ -N ppm	Soluble Salt ms/cm	Nitrogen (Total) (%)	Moisture %
89		5.4	16		115	0.	.5	1.2	523	2	3.7		
							INTER	PRETAT	ION		1		
CEC		P	ercent Ba	se Satura	ation		Propo	ortional E	quivalents (m	eq)	Cation	Ratio	C/N Ratio
meq/100g	% BS	% K	% Mg	%0	ິສ %1	Na K	<	Mg	Са	Na	Mg/K	Ca/Mg	
16.8	83.3	17.03	8.92	43.8	2 13.5	5 2.8	36 1	.50	7.36 2	.27	1:1	5:1	
Optimum Ra	ange:	3 - 5	8 - 20	60 -	80	0.5	- 1.3				7:1	5:1	

* Crop yield is influenced by a number a factors in addition to soil fertility. No guarantee or waranty concerning crop performance is made by A & L
* Results reported on a dry weight basis.

REPORT NO. C11308-7000 ACCOUNT NUMBER 98056

C:N Ratio

Sieve 2 Inch (% Passing)

Sieve 1 Inch (% Passing)

Sieve 1/2 Inch (% Passing)

Sieve 3/8 Inch (% Passing)

Sieve 1/4 Inch (% Passing)

Respiration-CO2-C/g OM/day

Respiration - CO2-C/g TS/day

Compost Stability Index

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, ON, N5V 3P5 Tel: (519) 457-2575 Fax: (519) 457-2664

Compost Analysis Proficiency

SAMPLE MATRIX:COMPOST

DATE RECEIVED:11/02/2011

DATE REPORTED:11/28/2011

PAGE:2

METHOD REFERENCE

TMECC.07.01

TMECC.07.02

TMECC.03.08

TMECC.03.08

TMECC.03.08

TMECC.03.09

TMECC.05.02

LOI@550C

ASTMD422

ASTMD422

ASTMD422

ASTMD422

ASTMD422

TMECC.05.08-B

TMECC.05.08-B

TMECC.05.08-B

0.10

0.10

0.10

0.01

0.01

0.01

0.01

CERTIFICATE OF ANALYSIS

21:1

%

%

%

%

%

mgCO2

mgCO2

100.00

97.40

75.90

62.50

40.70

BDL*

BDL*

8

PROJECT NO: PO#: MCCD01591 LAB NUMBER: 308702 SAMPLE ID: ASP 11/02/11 DETECTION PARAMETER RESULT UNIT LIMIT Fecal Coliform MPN/g <3 MPN/4g Salmonella <3 **Total Inert Materials** 0.10 % 0.01 Total Sharp Inert Materials (> 3.0mm) BDL* % 0.01 Total Plastic Inert Materials 0.10 % 0.01 OM @ 550 deg C 76.52 % 0.10 Moisture 55.90 % 0.10

REPORT NO.

ACCOUNT NUMBER

98056

C11308-7000

PO#: MCCD01591 LAB NUMBER: 308701 SAMPLEID: ASP 11/02/11

SAMPLE MATRIX:COMPOST DATE RECEIVED:11/02/2011 DATE REPORTED:11/28/2011 PAGE:1

Compost

Analysis

Proficiency

PARAMETER	RESULT	UNIT	DETECTION	METHOD REFERENCE
Arsenic	2.50	ug/g	1.00	TMECC.04.13
Cadmium	BDL*	ug/g	1.00	TMECC 04.06
Chromium	14.65	ug/g	1.00	TMECC.04.06
Cobalt	BDL*	ug/g	1.00	TMECC.04.06
Copper	34.20	ug/g	1.00	TMECC.04.06
beel	29.05	ug/g	1.00	TMECC.04.06
Mercury	BDL*	ug/g	0.10	TMECC 04 13A
Molybdenum	BDL*	ug/g	2.00	TMECC.04.06
Nickel	5.80	ug/g	1.00	TMECC.04.06
Selenium	BDL*	ua/a	1.00	TMECC.04.13
Zinc	66.25	ug/g	1.00	TMECC.04.06

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, ON, N5V 3P5 Tel: (519) 457-2575 Fax: (519) 457-2664

BDL - Below detectable levels Results reported on a dry weight basis

Results Authorized By:

A&L Canada Laboratories Inc.

2136 Jetstream Road · London, Ontario · N5V 3P5 · (519) 457-2575

ed: November 14, 2011

Sample	Recommended	PH	C/N	Moisture	Particle	Soluble	Maturity
I.D.#	Product Use		ratio		size	Salts	Index
Dartmouth Compost ASP (Nov.2, 2011)	* Landscaping/Soil Amendment, Mulching	5.4	21:1	55.9 %	1/2 in.	3.7 ms./cm	8 (Slovita) <0.01 mg CO ₂ C/g O.M./day

CQA Product Quality Test Requirements

Recommendations for product use are only a suggestion based on the analysis that was performed on this material. This compost material indicates mature properties and overall based on the physical and chemical properties would be primarily suited for general landscaping, soil mix blending, and mulching due to its medium to coarse texture. The suggested use is meant only as a guide for interpretation on what the best end use may be. **Comments:**

Heavy Metals: The results of our testing indicate the sample identified as "Dartmouth Compost ASP (Nov.2, 2011)" meets the current CCME type A compost standards for maximum allowable trace metal content in compost.

Microbiological: The results of our testing indicate this sample meets the current CCME type A compost standards for maximum allowable microbiological levels.

<u>Compost Quality Requirements:</u> *The results of our testing indicate that this product is a medium to coarse textured mature compost (76 %+ 1/2 in.), with rich mineral properties, which would meet criteria for soil amendment, blending and light topdressing end-uses purposes with precautionary restrictions. The precautionary exceptions being the proportion of sodium (%Na), which if used in too heavy a proportion could cause some problems with sensitive species. The recommended maximum allowable level of sodium for landscaping and soil amendment purposes is 2.0% available Na in the final soil mix. This compost has approximately 14.0 % available sodium, which is above our maximum recommended guidelines. The sodium levels of this compost sample though higher is suitable for agricultural broadcast field applications and are made to

Report Number: 1196-035 Account Number: 00897

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

At

Report Date: 7/29/2011

COMPOST REPORT

Page: 1

Sample Number	Lab Number	pН	Lime Index		Availal Organic M	ole P atter%	hosphorus P ppm	Potassium K ppm	Magn Mg	esium ppm	Calcium Ca ppm
1	7274	8.3	6.9		19	5	269	2581	9	55	9000
Sulfur S ppm	Zinc Zn ppm	Mangane Mn ppn	ese In n Fe	on ppm	Copper Cu ppm	Boror B ppn	n Sodium n Nappm	Nitrate-N NO ₃ -N ppm	Soluble Salt ms/cm	Nitrogen (Total) (%)	Moisture %
35	19.5	51	20)5	4.2	10.5	114	18	1.7	1.35	
					INTER	PRETAT	ION		Î		
CEC	P	ercent Base	e Saturatior		Prope	ortional E	quivalents (m	eq)	Cation	Ratio	C/N Ratio
meq/100g %	BS %K	% Mg	% Ca	% Na	к	Mg	Ca	Na	Mg/K	Ca/Mg	
60.0 10	0.0 11.04	13.10	75.04	0.83	6.62	7.85	45.00 0	.50	1:1	6:1	
Optimum Ran	ge: 3 - 5	8 - 20	60 - 80	\bigcirc	0.5 - 1.3				7:1	5:1	

* Crop yield is influenced by a number of factors in addition to soil fertility. No guarantee or waranty concerning crop performance is made by A & L * Results reported on a dry weight basis.

REPORT NO. C11196-7008 ACCOUNT NUMBER 00897

4

P

A & L Canada Laboratories Inc. 2138 Jetstream Road, London, ON, N5V 3P5 Tel: (519) 457-2575 Fax: (519) 457-2684

PROJECT NO: PO#: MW-PC5433 LAB NUMBER: 196716 SAMPLE ID: PC12JL

RDL - Below detectable levels

SAMPLE MATRIX:COMPOST DATE RECEIVED:07/14/2011 DATE REPORTED:07/29/2011 PAGE:2

PARAMETER	RESULT	UNIT	DETECTION	METHOD REFERENCE
Fecal Coliform	7	MPN/g		TMECC.07.01
Salmonella	<3	MPN/4g		TMECC.07.02
Total Inert Materials	0.16	%	0.01	TMECC.03.08
Total Sharp Inert Materials (> 3.0mm)	BDL*	%	0.01	TMECC.03.08
Total Plastic Inert Materials	0.16	%	0.01	TMECC.03.08
OM @ 550 deg C	34.13	%	0.10	LOI@550C
Moisture	43.90	%	0.10	TMECC.03.09
C:N Ratio	18:1			TMECC 05.02
Sieve 2 Inch (% Passing)	100.00	%	0.10	ASTMD422
Sieve 1 Inch (% Passing)	100.00	%	0.10	ASTMD422
Sieve 1/2 Inch (% Passing)	100.00	%	0.10	ASTMD422
Sieve 3/8 Inch (% Passing)	81.20	%	0.01	ASTMD422
Sieve 1/4 Inch (% Passing)	65.20	%	0.01	ASTMD422
Compost Stability Index	8			TMECC 05.08-B
Respiration-CO2-C/g OM/day	0.20	maCO2	0.01	TMECC.05.08-B
Respiration - CO2-C/g TS/day	0.10	mgCO2	0.01	TMECC.05.08-B

REPORT NO. C11196-7008 Account number 00897	A & L Canada Laboratories Inc. 2136 Jetstream Road, London, ON, N5V 3P5 Tel: (519) 457-2575 Fax: (519) 457-2664	
8		Compost Analysis Proficiency
Pho Fa		Testing Program
PROJECT NO: PO#: N	W-PC5433 SAMPLE MATRIX:CO DATE RECEIVED:07/	MPOST 14/2011

		DATE REPORTED:07/29/2011 PAGE:1			
RESULT	UNIT	DETECTION LIMIT	METHOD REFERENCE		
2.30	ug/g	1.00	TMECC.04.13		
BDL*	ug/g	1.00	TMECC.04.06		
16.75	ug/g	1.00	TMECC.04.06		
BDL*	ug/g	1.00	TMECC.04.06		
24.25	ug/g	1.00	TMECC.04.06		
10.40	ug/g	1.00	TMECC.04.06		
BDL*	ug/g	0.10	TMECC.04.13A		
BDL*	ug/g	2.00	TMECC.04.06		
4.65	ug/g	1.00	TMECC.04.06		
BDL* 63.45	ug/g ug/g	1.00 1.00	TMECC.04.13 TMECC.04.06		
	RESULT 2.30 BDL* 16.75 BDL* 24.25 10.40 BDL* BDL* 4.65 BDL* 63.45	RESULT UNIT 2.30 ug/g BDL* ug/g 16.75 ug/g BDL* ug/g 24.25 ug/g 10.40 ug/g BDL* ug/g 4.65 ug/g 63.45 ug/g	RESULT UNIT DETECTION LIMIT 2.30 ug/g 1.00 BDL* ug/g 1.00 16.75 ug/g 1.00 BDL* ug/g 1.00 BDL* ug/g 1.00 24.25 ug/g 1.00 10.40 ug/g 1.00 BDL* ug/g 0.10 BDL* ug/g 2.00 4.65 ug/g 1.00 BDL* ug/g 1.00 63.45 ug/g 1.00		

BDL - Below detectable levels

LAB NUMBER: 196715

A&L Canada Laboratories Inc.

2136 Jetstream Road · London, Ontario · N5V 3P5 · (519) 457-2575

CQA Repor Results for

CQA Product Quality Test Requirements

Sample	Recommended	PH	C/N	Moisture	Particle	Soluble	Maturity
I.D.#	Product Use		ratio		size	Salts	Index
Pickering LYW Compost PC12JL (July 14, 2011)	* Landscaping/Soil Amendment, light topdressing	8.3	18:1	43.9 %	3/8 in.	1.7 ms./cm	8 (Slovita) 0.20 mg CO ₂ C/g O.M./day

Recommendations for product use are only a suggestion based on the analysis that was performed on this material. This compost material indicates mature properties and overall based on the physical and chemical properties would be primarily suited for general landscaping, soil mix blending, and light topdressing due to its fine texture. The suggested use is meant only as a guide for interpretation on what the best end use may be.

Comments:

Heavy Metals: The results of our testing indicate the sample identified as "Pickering LYW Compost PC12JL (July 14, 2011)" meets the current Ontario type A compost standards for maximum allowable trace metal content in compost.

Microbiological: The results of our testing indicate this sample meets the current Ontario type A compost standards for maximum allowable microbiological levels.

<u>Compost Quality Requirements:</u> *The results of our testing indicate that this product is a fine to medium textured mature compost (81 %+ 3/8 in.), with rich mineral properties, which would meet criteria for soil amendment, blending and light topdressing end-uses purposes with precautionary restrictions. The precautionary exceptions being the proportion of sodium (%Na), which if used in too heavy a proportion could cause some problems with sensitive species. The recommended maximum allowable level of sodium for landscaping and soil amendment purposes is 2.0% available Na in the final soil mix. This compost has approximately 0.83 % available sodium, which is low and should not present a problem with growing plants. The compost is rich in available potassium, calcium, and zinc, which make it ideal for soil enriching, and

To:

Thank You

Greg Patterson C.C.A. —President A&L Canada Laboratories www.alcanada.com

